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Abstract

Heat transfer in the thermal entrance region of a pipe or a parallel plate channel has been analysed for laminar and
turbulent internal flow taking into account axial heat conduction effects in the fluid. The present paper shows an an-
alytical solution for the problem of a piecewise uniform wall heat flux. The obtained exact analytical solutions for the
extended Graetz problem are as simple and efficient to compute as the related solutions of the parabolic problem. The
obtained results show the effect of axial heat conduction in the fluid for a semi-infinite as well as for a finite length of the
heated sections. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The analysis of heat transfer in the thermal entrance
region in ducts has been widely considered. For laminar
internal flows an extensive literature review is given by
Shah and London [1]. Also for turbulent internal flows
many theoretical and experimental studies are available
in literature [2]. In many cases of technical interest the
magnitude of the Peclet number in the flow is sufficiently
large that axial heat conduction effects in the flow can be
ignored. This simplifies drastically the complexity in
solving the energy equation. On the other hand, axial
heat conduction effects in the flow play an important
role if the Peclet number is smaller. This is the case, for
example, in compact heat exchangers, where liquid
metals are used as working fluids.

Many investigations have been carried out which deal
with the solution of the so-called “‘extended Graetz
problem”, which takes into account the axial heat con-
duction in the fluid. [1] contains a literature review of this
subject. Hennecke [3] solved numerically the energy
equation for a hydrodynamically fully developed laminar
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flow in a circular pipe. He showed the importance of axial
heat conduction in the fluid for the cases of uniform wall
temperature and uniform wall heat flux. He also consid-
ered one finitely heated zone. For an analytical solution
of the extended Graetz problem, even in laminar flow, the
problem arises that the associated eigenvalue problem for
the energy equation is non-selfadjoint. This means that
the resulting eigenvalues could at least in principle be
complex and the eigenvectors could be incomplete. In
order to overcome these problems, Hsu [4], who solved
the energy equation for laminar pipe and channel flow
with constant heat flux at the wall, constructed the so-
lution of the problem from two independent series solu-
tions for x <0 and x> 0. Both the temperature
distribution and the gradients were then matched atx = 0
by constructing a pair of orthogonal functions from the
non-orthogononal eigenfunctions by using the Gram—
Schmidt orthonormalisation procedure. Hence this
method is complicated by expansions in term of eigen-
functions belonging to a non-selfadjoint operator.
Papoutsakis et al. [5] showed that it is possible to
produce an entirely analytical solution to the extended
Graetz problem for heat flux boundary conditions by
decomposing the energy equation into a pair of first-
order partial differential equations. This method has
been used also by Papoutsakis et al. [6] for the case of
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Nomenclature

a thermal diffusivity, (m? s~!)

a),ay functions defined by Eq. (6)

A; constants

Cp specific heat at constant pressure,
(Jkg' K

D hydraulic diameter, 44 (planar channel), 2R
(circular pipe), (m)

AF relative error, (Nuelliplic - Nuparabolic)/Nuelliplic

h distance between the centreline and the wall
(planar duct), (m)

k flow index, 0 for a planar channel, 1 for a

circular pipe

k thermal conductivity, (W m~' K™')

/ mixing length, (m)

L characteristic length, L = & (planar duct),
L = R (circular pipe), (m)

L matrix operator, Eq. (9)

n coordinate, (m)

Nup Nusselt number based on the hydraulic
diameter, Eq. (37)
Nu,,  Nusselt number for fully developed flow

p pressure, (N m~?)

Pr Prandtl number

Pep Peclet number based on the hydraulic
diameter

Pry turbulent Prandtl number

Gw wall heat flux, (W m™2)

r radial coordinate, (m)

R pipe radius, (m)

Rep Reynolds number based on the hydraulic
diameter

T temperature, (K)

Ty uniform temperature for x — —oo, (K)

T bulk temperature, Eq. (36), (K)

u axial velocity, (m s1)

i1y axial mean velocity, (m s7!)

X axial coordinate, (m)

X end of the heated section, (m)

X dimensionless coordinate, Eq. (3)

Greek symbols

Ehx eddy diffusivity in axial direction, (m? s7!)
€hn eddy diffusivity in normal direction, (m? s7!)
&m eddy kinematic viscosity, (m? s7!)

r density, (kg m~?)

A eigenvalue

0 dimensionless temperature

0, dimensionless bulk temperature

0 fully developed temperature profile

kinematic viscosity, (m? s!)
axial energy flow, Eq. (7)
eigenfunction

Q[ =

<

constant wall temperature in laminar pipe flow. Unfor-
tunately only some temperature profiles have been
shown in [5], but no plots of the Nusselt number are
given. Nguyen [7] and Bilir [8] investigated numerically
the heat transfer for thermally developing flows in a
circular pipe and between parallel plates. Nguyen [7]
derived from his computational results accurate en-
gineering correlations for the Peclet number effect on the
local Nusselt number and the thermal entrance length.

Although axial heat conduction can be ignored for
turbulent convection in ordinary fluids and gases, that is
often not the case when using liquid metal as the
working fluid. This is because of the very low Prandtl
number for this type of fluid (0.001 < Pr < 0.06). Thus,
the Peclet number can be smaller than five in turbulent
duct flows where liquid metals are used. A literature
review concerning heat transfer in liquid metals can be
found in [9]. Lee [10] studied the extended Graetz
problem in turbulent pipe flow for constant wall heat
flux for a semi-infinite heated section (x > 0). He used
the turbulent Prandtl number model of Azer and Chao
[11] for his study. Lee used the method of Hsu [4] to
obtain a series solution for the problem. Therefore, the
resulting solution is plagued by the same uncertainties as
the one in [4]. Weigand [12] investigated analytically the
extended turbulent Graetz problem with Dirichlet wall

boundary conditions for a circular pipe and a parallel
plate channel. He used the method developed by Pap-
outsakis et al. [6] for laminar pipe flow and extended the
method to turbulent flow by using a newly defined
vector norm. This method is not plagued by any un-
certainties arising from expansions in terms of eigen-
functions belonging to a non-selfadjoint operator. In the
case of turbulent flow inside a parallel plate channel, the
effect of axial heat conduction within the fluid was only
studied by Faggiani and Gori [13]. They solved numer-
ically the energy equation for a duct where one wall was
subjected to a constant heat flux while the second wall
was insulated.

Nearly all of the above-mentioned investigations only
considered a heating section which is semi-infinite in
length. Hennecke [3] was one of the few who calculated
the temperature distribution at the end of a long heated
zone for laminar pipe flow. However, he only investi-
gated one length of the heated zone and did not show
the effect of changing length of the heated section on the
temperature field in the flow. Additionally no analytical
study is known in the literature which deals with the
effect of axial heat conduction in a parallel plate channel
with a piecewise heated wall.

The purpose of the present paper is to derive an exact
analytical solution for the extended Graetz problem with
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piecewise constant heat flux at the wall. The solution will
be given for laminar and turbulent internal flows with
low Peclet numbers inside a parallel plate channel as well
as inside a circular pipe. By using the solution method
according to Papoutsakis et al. [6] and Weigand [12] it is
possible to derive analytical solutions for the extended
Graetz problem which are computationally as simple
and efficient as the solution for the parabolic problem.
Additionally, the solutions presented here are used to
show the effect of a finite heated length on the distri-
bution of the Nusselt number and the temperature field.
This case elucidates that axial heat conduction effects
can also be of interest for larger Peclet numbers, if the
heated section is smaller in size.

2. Analysis

Fig. 1 shows the geometrical configuration and the
coordinate system. It is assumed that the flow enters the
duct with a fully developed laminar or turbulent velocity
profile and with a uniform temperature distribution 7,
for x — —oo. For 0 < x < x; the duct is uniformly he-
ated by applying the constant heat flux ¢, to the wall.
The characteristic length L, indicated in Fig. 1, denotes
half of the channel height / for the flow in a parallel
plate channel or the radius R for the flow in a circular
pipe. Under the assumptions of an incompressible flow
with constant physical properties, negligible viscous and
turbulent energy dissipation and hydrodynamically fully
developed flow, the energy equation is given by

cua—T—g (k+ CpE )a—T
PO ~ox Peptix) By

1 0 or
+r7$|:7k(k+pcpbhl1)a:| (1)
with the boundary conditions
n=0: 0T/on=0,
n=L: x<0, x=x: 0T/on=0,
0<x<x : OT/on=qy/k, (2)
ARNRRNR
q,, =const.
ARRAAY! mﬁmw
Fullyﬂ(‘ilev://eloped X L
- N |
A Y Ry
G,=0

Fig. 1. Geometrical configuration and coordinate system.

The index &, which appears in Eq. (1), is equal to 0 for a
planar duct and equal to 1 for a circular pipe. For k =1
the coordinate n is equal to r (circular pipe). The hy-
drodynamically fully developed velocity distribution u,
which appears in Eq. (1), has been calculated from the
momentum equation by using the well-known Nikur-
adse mixing length distribution with the van Driest
damping factor. The reader is referred to [12] for more
details.

By introducing the following dimensionless quanti-
ties,

T-T, . x 1 . u _ n _ r
= , X=—7——, U=—, n=—, r=—,
gwl/k L Pe;. il L L
oL v
Pe, = Re Pr, Rep =——, Pr=-—, (3)
v a
gm:87m7 Prlzgim
v Ehn

into Egs. (1) and (2) the energy equation can be cast into
the following form:

G0 _ L of 0] 1o, o @
% Pl ox| ox|  Aon| Com

with the boundary conditions

X——o0: 0=0,
- 00
n=0: & 07

o0 (5)
n=1: 0<x<x: —==1,

on

00

<0, x=Xx =0.

. E—
The functions a;(7) and a,(7) are given by

Pr_ x _ Pr_
al(;l): 1+ﬁgm(ill)’ az(n): l-‘rﬁﬁm (6)
t hn t

In the following solution process for Eq. (4) no as-
sumptions are required about the functions a,(7) and
ay(n). The solution holds for arbitrary functions
a;(n) =1 and ay(7) = 1. This condition is obviously
satisfied by Eq. (6). The turbulent Prandtl number as
well as the ratio &nx/en, Which were used for the calcu-
lations will be specified later.

Papoutsakis et al. [S] showed that Eq. (4), together
with the boundary conditions according to Eq. (5), can
be solved for laminar pipe flow (a; =a, =1) by de-
composing the elliptic partial differential equation into
a pair of first-order partial differential equations.
Weigand [12] showed how the method of Papoutsakis
et al. [6] can be adapted for solving the extended tur-
bulent Graetz problem for constant wall temperature.
The ensuing procedure for solving Eqs. (4) and (5)
follows [5,12].
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Let us define a function X(x,7) which represents the
axial energy flow through a cross-sectional area of the
height 7 by

" 1 007, -
Z:/O [u@—ﬁ{al(n)& #* dn. (7)
Introducing X, defined by Eq. (7), into the energy
equation (4) results in the following system of partial
differential equations:

0 - -

S F( i) = LF () (8)
with the two component vector F and the operator L
given by -

0(%, i) P _Pi o

- ? ay(n *ay(7) on

P L= 1(7) 1(7) _ (9)
Z(iv ﬁ) fkllz(;l)% 0

The boundary conditions belonging to X(¥,7) can be
derived from Egs. (5) and (7):

lim ¥=0, 7=0: X=0,

0, —oco<x<0, (10)
n=1 2= 0<x<5,

)NCl, X < x<oo.

Following the work of Papoutsakis et al. [S] and Wei-
gand [12] it can be shown that the operator L gives rise
to a self-adjoint problem even though the original con-
vective diffusion operator is non-selfadjoint. This fact is
of course dependent on the sort of inner product be-
tween two vectors which is used. If we define an inner
product between two vectors

. P, (n) . Ai ()
b — - (1)
@,(7) Ay(it)

according to Weigand [12] as

<&5,71>:/0 “‘Igjzszqsl(ﬁ)m(ﬁ)
D) A7) | 0 (12)

and the following domain for L

D(L) = {Es €H: (B € H), dy(1) = by(0) = o},

(13)

then it can be shown that L is a symmetric operator in
the Hilbert space H of interest (this means that
(@,LA) = (L&, A)). For a detailed explanation see

Weigand [12]. Thus the self-adjoint eigenvalue problem
associated with Eq. (8) is given by

where @j is the eigenvector corresponding to the eigen-

value 4;. Using the definition of L, the eigenvalue
problem, Eq. (14), can be rewritten as

7 1
) D S Y 1
eL[al(ﬁ) ! ay (i) 12:| S (13
f’faz(f,)ds;.l = 1,®,. (16)

Eliminating dj;.z from Eq. (15) results in the following
eigenvalue problem for @;:

; J®y = 0. (17)
er

[#az(fz)q?}l}/ 4 [4;;(") i

Eq. (17) has to be solved with the following boundary
conditions:

@,(0)=0, @,(1)=0. (18)

Additionally an arbitrary normalising condition
2;,(0) =1 (19)

has been used. Eq. (17) possesses both positive and
negative eigenvalues. This is because the operator L is
neither positive nor negative definite. All Z; are real
because they are in fact the eigenvalues of a self-adjoint
problem. For a;(i7)/Pe} — 0 the eigenvalue problem
given by Eq. (17) reduces to the parabolic Graetz
problem in turbulent flow with no effect of axial heat
conduction. For a; =a, =1 and a laminar velocity
profile for # the eigenvalue problem reduces to the ex-
tended Graetz problem for laminar flow. Because the
two sets of eigenvectors constitute an orthonormal basis
in H (see also [12]) an arbitrary vector F can be ex-
panded in terms of eigenfunctions in the following way:

; () (20)

with the vector norm ||&;|> = (&, &,).

Now let us reconsider the solution of Eq. (4). The
solution of the problem F(%,77) will be obtained in
the form of a series according to Eq. (20). Therefore, the
inner product appearing in the expansion coefficients in
Eq. (20) must be determined. By using Eq. (12) and re-
calling that L is a symmetric operator in D, one obtains

<£ﬁ, 65,> = <F,§<ﬁj> — oy ()2, 1). (21)
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Now applying the inner product, defined in Eq. (12), to
both sides of Eq. (14) and using this equation, one de-
rives from Eq. (21)

<§ﬁ, é,> - ;vj<ﬁ, q3j> — @, ()2 1). (22)

Taking the inner product of both sides of Eq. (8) with i?,—
and using Eq. (22) one finally obtains

6 - = = =2 ~
= (F.8;) = 4,(F. %) - 0p(DZ(. 1), (23)
where X(x,1) is given by the boundary conditions ac-
cording to Eq. (10). Eq. (23) can be solved separately for
positive and negative eigenvalues. This results in

<F,d’>;>:_qu;(1)/ S exp(; ;- 1) dE  (24)

—0o0

<ﬁ, Eﬁ;> - <1>,-ﬁ(1)/j I(% D exp(f (F—%)dx. (25

After evaluating the integrals in Egs. (24) and (25), the
following results for 6(x,7), which is the first vector
component of F(x,7), can be derived.

x<O0:

2 12
J=1 ’(Dj /“/'+
x [1=exp (= 77%) | @57, (26)
0<X <X
= @, (1 o= D1
0(x7 n) = Z /lE )2 (D,l(n) +XZ JIE )2 @/](}’Z)
j=1 /lf D; = 2| ®;
0 d)/’l(l) exp <}f§c) o
- Z . 2 _2 d)/l(n)
J=1 ‘dﬁ; ;"_f
o) + % —_ X
e simoe(e),
Z I 2 ) Jl (I’l),
= HQSJ.* 4
(27)
X > X
s < ¢ (1 N
057) = > — 25 exp (45 (5 — 1) ) @, (3)
=i |#
L= P(1
5 Z /IE )2 (pjl(n)
=P
0 45]1(1) exp () x) o
- o2 )2 (p_/‘l (7) (28)
i=1 ’(15]* 4

The temperature distribution given above contains for
0 < X < X; both negative and positive eigenfunctions.
The expressions for the temperature field can be further
simplified by replacing the two sums

J=1 )»12 J

< ¢, (1) @)
> = a(i)

= 2P

by analytical functions (see Appendix A). One finally
obtains:

x<O0:
0(x.5) = jf;A;q;; (#)[1 - exp (~4%)]
X exp ()ji), (30)
0<x<xp:

0(%.7) = (i) + (k+ )i - S 4w (i) exp (4%)
- /ilAj*(Dﬁ (n) exp (1 (x —5c1>>.

/N
<

(1)

X > X
0(%,7) = (k+ )7 + iAj’d?j’l (7)
X [exp ( - /1/')21) - 1} exp ()j_fc) (32)

with the function ¥(71) given by

'1/<n> =/0ﬁ ﬁ/gnﬁ(s)f"dsdn+cz

- lP(n) e (33)
where
C, = (k;il)z /01 Hay (n) dit — (k+1)

x /01 #a(n) P (n)dn. (34)

The coefficients 4; are defined by

= ¢j1(1) _ 1 ) (35)
i

3| - 22(d/da) (@, /2)

L=
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After the temperature field is known, the bulk tem-
perature

1 1
Ty :/ uTrJ(dn// wr* dn (36)
0 0

and the Nusselt number

Nup = — D(Z—i)n:L/(Tb -7, (37)

can be calculated. Introducing the predicted temperature
field in the flow into the above expressions for 7;, and
Nup, one obtains:

x<0:

00 (%) = e+ 1) > a; [t —exp (= /%) [ exp (4/%)

i=1

x /01 i @) <n) di.

0<x<ixp:

0, ()
D) N oy )
— /O/al(n>dn+(k+1)x7(k+1)

Pe?
x ji:Aj exp (/%) /0 | i@, (7) di = (k + 1)
x 2/4; exp (;j <x - x1>) /01 @ o', (i) di.

(38)

(39)

X > X
05 (%) = (k+ 1% — (k + l)iAj’[exp ( —;L;a) - 1]
X exp (z;sc) / | @ @, (1) dit (40)

The Nusselt number is zero for ¥ < 0 and for X > %
because there is zero heat flux at the wall. For 0 < ¥ < x;
the Nusselt number is given by:

Nup = —ﬁ{% /0 Py (7)dit — (1)

— gAj’ exp(4; X)
X {(k+ 1) /01 ar* @, () dn — <1>;1(1)]

— ZA;’ exp(// (X —x1))
J=1

x {(k ~1) /01 @ o', (i) dii — q§;(1)} }1. (41)

3. Results and discussion

In order to obtain a solution of the energy equation
(4), the ratio (enx/enn) of the eddy diffusivity must be
specified. In the following calculations this ratio is set to
one. This assumption has been made previously by Lee
[10] and by Chieng and Launder [14]. Additionally, the
turbulent Prandtl number has to be specified. For the
case of liquid metal flows there is a huge variety of dif-
ferent models [15]. For the present study, the model of
Weigand et al. [16]

1 1 R
PFt—l/{m-i‘CPet Prlm-ﬁ-(CP&)

X {1 — exp < - 7CP61\1/PK):| }, (42)

&m 100
Pet:P}’77 P"tm:085+w,

C=03 (43)

has been used, because the model has proved to produce
reliable results for predicted Nusselt numbers for liquid
metal flows [16]. Nevertheless, it should be noted that
the analysis presented in the previous chapter is more
general and can be used with any turbulent Prandtl
number concept and with arbitrary functions for a;(7)
and a,(n).

3.1. Numerical procedure and accuracy of the predictions

The evaluation of the sums for the temperature dis-
tribution and for the Nusselt number require that the
eigenfunctions and the eigenvalues are known. For this
analytical study these quantities have been calculated
numerically by solving the eigenvalue problem, given by
Egs. (17)—(19) with the help of a four stage Runge—
Kutta method. By comparing the calculated eigenvalues
and constants for the special case of laminar pipe flow
(a1 = ay =1, & =2(1 — 7?)) with values given in [5,6] it
could be seen that the relative error is of the order of
1076, Additionally care has been taken by evaluating the
sum expressions for the temperature field and the Nus-
selt number, so that the number of eigenvalues and ei-
genfunctions has been high enough. Normally 100
eigenvalues and eigenfunctions and about 1000 grid
points in n-direction guaranteed very precise results.

3.2. Circular pipe

3.2.1. Laminar flow

For the case of laminar pipe flow (a; =ar =1,
i =2(1 —a?%)), the results can be compared with pre-
dictions available in the literature. Fig. 2 shows the
distribution of the Nusselt number for a semi-infinite
heating length. The results are compared to several nu-
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Pep=1 o Hennecke [3]
o Nguyen [7]

...... Hsu [4]

NUD

x  Bilir [8]

Present
Calculation

0.001 0.01 0.1 1
X
Fig. 2. Variation of the local Nusselt number in the thermal
entry region of a circular pipe for laminar flow.

Pep =5 — Present Calculation
0 Hennecke [3]

F=0
. F=06
10 ‘ ; ; ;
-0.5 -0.3 -0.1 0.1 0.3
-

Fig. 3. Temperature distribution near the end of the heating
section for a circular pipe (Pep = 5).

merical calculations by Hennecke [3], Nguyen [7], Bilir
[8] and with the analytical prediction by Hsu [4]. It can
be seen from Fig. 2 that the present analytical solution
agrees very well with the other results.

As mentioned before, Hennecke [3] was one of the
few who investigated also the distribution of the tem-
perature field at the end of the heated section. He
showed results for one fixed length of a long heated
section. Fig. 3 shows temperature profiles for three dif-
ferent values of the radial coordinate at the end of the
heating zone. The agreement between Henneckes nu-
merical predictions and the analytical solution is excel-
lent. Fig. 3 shows also that the wall temperature has an
overshoot near the end of the heating section, before it
attains the outlet temperature. This behaviour can also
been seen more clearly in Fig. 4. In this figure, the
centreline temperature as well as the wall temperature
are shown for two different values of the Peclet number
and two different length of the heating section (¥; = 0.7
and ¥; = 1.3). For a Peclet number Pep = 10 it can be
seen that the wall temperature for x; = 1.3 adopts a
linear shape in the middle of the heating section. This

indicates a nearly fully developed behaviour of the heat
transfer in this region. However, near the end of the
heating section, a strong change in the wall temperature
can be observed. Of course, this behaviour can only be
captured if the fully elliptic energy equation is solved.
For the smaller Peclet number (Pep = 2), the tempera-
ture distribution within the whole heating section is
dominated by elliptic effects. The wall temperature, for
example, never attains a linear shape. Fig. 5 shows the
distribution of the Nusselt number near the end of the
long heated zone for two different Peclet numbers.
The present analytical calculation is compared with the
numerical calculation by Hennecke [3] and good agree-
ment is found. Fig. 6 shows the distribution of the
Nusselt number for a short heated section with a length
of x; = 0.1 for different values of the Peclet number. It
can be seen that the Nusselt number decreases with in-
creasing axial distance from the start of the heating zone
up to a point where a nearly constant value of the
Nusselt number is reached. When the end of the heating
section is approached, the value of the Nusselt number
rises again. This behaviour is caused by axial heat con-
duction effects within the flow. Near the start and the
end of the heating zone the fluid temperature is changed
by axial heat conduction within the flow causing lower
mean fluid temperature in the flow as in the case of the
parabolic problem. This results in increasing values of
the Nusselt number in this areas. With increasing values
of the Peclet number, the shape of the Nusselt number
approaches the one for the parabolic problem. The in-
crease in Nusselt number at the end of the heated section
is therefore not so much pronounced. Fig. 6 elucidates
therefore the significance of axial heat conduction effects
in the flow for shorter heated zones.

3.2.2. Turbulent flow

Table 1 shows positive and negative eigenvalues and
constants for Pr=0.001 and various values of Rey-
nolds number. From the table it can be seen that the
positive eigenvalues for ¥ < 0 increase dramatically
with increasing values of Reynolds number, indicating
the vanishing effect of axial heat conduction within the
fluid. As in the case of laminar internal flow, we con-
sider two different cases for turbulent internal flow. The
first one, is a semi-infinite heating section (¥ > 0) which
has also been considered by Lee [10] by using the
method of Hsu [4]. For the case of fully developed flow,
Fig. 7 shows a comparison between experimental data
of Fuchs [17] for liquid Na (Pr = 0.007) and the present
calculations. As it can be seen from the figure, the
agreement between the theoretical and experimental
data is very good. Fig. 8 shows the distribution of the
local Nusselt number for Pr = 0.001 for various values
of Peclet number. It can be seen that the Nusselt
number for the fully developed flow increases with
Peclet number. Fig. 9 shows the distribution of the bulk
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(a) il
X

3ﬁ

Fig. 4. Centreline and wall temperature distribution in the heating section of a circular pipe.

o Hennecke [3]

— Present Calculation Pep=5

Fig. 5. Nusselt number near the end of the heating section in a
circular pipe.

30 1
25 4
§ \ Pep=100
3 15
N Pep=5
10 3%
5 | T R ety R LR R rT
Pep=10
0 T T T j '
0.0 02 04 06 08 0
X
X

Fig. 6. Distribution of the local Nusselt number within the
heating section of a circular pipe.

temperature for a semi-infinite heated section for dif-
ferent values of Peclet number and Pr=0.001. This
figure shows very clearly the effect of axial heat con-
duction within the flow. Axial conduction effects within

the flow change the distribution of the bulk tempera-
ture for lower Peclet numbers and result in an increased
value of the bulk temperature at x = 0. With increasing
Peclet number this effect reduces and the bulk tem-
perature shows a linear distribution starting very clo-
sely to x = 0 with a value of approximately zero.

Let us now consider the case of a finite heated sec-
tion: Fig. 10 shows the distribution of the Nusselt
number for a short heated section of ¥, =0.1 and a
Prandtl number of Pr=0.001. By comparing Fig. 10
with the comparable situation for laminar flow (Fig. 6),
it can be seen that the turbulent flow results in a higher
Nusselt number for the same Peclet number. Addition-
ally it can be noticed that also for turbulent flow the
same shape of the curves occur as for laminar flow, with
the difference that the change in the mean Nusselt
number with increasing Peclet numbers is more pro-
nounced for the laminar flow. This is caused by turbu-
lent mixing in the flow, resulting in more uniform
velocity and temperature profiles.

Fig. 11 shows a comparison between a calculation
considering and one neglecting axial heat conduction
within the flow. From Fig. 11, it can be seen that the
relative error, which is made by neglecting the axial heat
conduction effects in the flow can be quite large. Of
course, the largest error always appears at the start and
the end of the heated section. Fig. 11 shows also the
relative error for a larger Peclet number of 10. It is no-
ticeable, that the deviation between both calculations is
in this case only significant near the start and the end of
the heating section.

3.3. Parallel plates

3.3.1. Laminar flow
The flow index k in the preceding equations must be
set to zero for the calculation of the heat transfer in a
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Table 1
Eigenvalues and constants for various Reynolds numbers and Pr = 0.001 (circular pipe with turbulent flow)
Re j 2 A; ij* Af
5000 1 —6.8028E+0 —2.3412E-1 6.1136E+0 2.9822E-1
2 —1.4470E+1 8.3891E-2 1.3660E+1 —9.8091E-2
3 —2.2238E+1 —4.5562E-2 2.1339E+1 5.0966E-2
4 -3.0041E+1 2.9470E-2 2.9140E+1 —3.1758E-2
5 —3.7862E+1 —2.0998E-2 3.6969E+1 2.2138E-2
6 —4.5693E+1 1.5913E-2 4.4809E+1 —1.6552E-2
7 —5.3530E+1 —1.2585E-2 5.2654E+1 1.2978E-2
8 —6.1371E+1 1.0270E-2 6.0501E+1 —1.0528E-2
9 —6.9214E+1 —8.5839E-3 6.8350E+1 8.7644E-3
10 —7.7060E+1 7.3122E-3 7.6200E+1 —7.4440E-3
10,000 1 —1.0059E+1 -2.7799E-1 2.3675E+1 5.6338E-2
2 -2.4181E+1 9.6515E-2 3.7596E+1 —5.0159E-2
3 —3.9174E+1 —5.1052E-2 5.1350E+1 3.7686E-2
4 —5.4474E+1 3.2438E-2 6.6342E+1 —2.6098E-2
5 —6.9917E+1 —2.2826E-2 8.1681E+1 1.9121E-2
6 —8.5439E+1 1.7138E-2 9.7164E+1 —1.4715E-2
7 —1.0101E+2 —1.3457E-2 1.1272E+2 1.1757E-2
8 —1.1661E+2 1.0919E-2 1.2832E+2 —9.6657E-3
9 —1.3223E+2 —9.0834E-3 1.4395E+2 8.1264E-3
10 —1.4787E+2 7.7068E-3 1.5959E+2 —6.9555E-3
15,000 1 —1.1654E+1 —3.0543E-1 5.1532E+1 1.4659E-2
2 -3.0642E+1 1.0690E—1 74113E+1 —2.4560E-2
3 —5.1979E+1 —5.5928E-2 9.1741E+1 2.7020E-2
4 —7.4246E+1 3.5141E-2 1.1285E+2 -2.1127E-2
5 —9.6964E+1 —2.4503E-2 1.3509E+2 1.6385E-2
6 —1.1993E+2 1.8265E-2 1.5784E+2 —1.3028E-2
7 —1.4305E+2 —1.4259E-2 1.8084E+2 0.0630E-2
8 —1.6627E+2 1.1515E-2 2.0400E+2 —8.8682E-3
9 —1.8956E+2 —9.5420E-3 2.2726E+2 7.5365E-3
10 -2.1291E+2 8.0691E-3 2.5059E+2 —6.5039E-3
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Fig. 7. Nusselt number for fully developed turbulent pipe flow
as a function of the Reynolds number.

parallel plate channel. Fig. 12 shows the development of
the temperature profiles in the channel at different axial
positions for Pep = 5. The influence of axial heat con-
duction within the flow, which causes changes in the
temperature profiles for x < 0 is clearly visible. Fig. 13
shows the distribution of the local Nusselt number for a

Fig. 8. Variation of the local Nusselt number in the thermal
entry region for turbulent pipe flow.

finite heated section for different values of the heating
length %,. It can be noticed that the mean value of the
Nusselt number decreases with increasing length of the
heating section because of the weaker influence of
the axial heat conduction within the flow.
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Fig. 9. Variation of the bulk temperature for turbulent pipe
flow.
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Fig. 10. Distribution of the local Nusselt number for a finite
heating section with turbulent internal flow in a pipe.

3.3.2. Turbulent flow

Fig. 14 shows the distribution of the Nusselt number
for a finite heated section. It can be seen that the heat
transfer increases for a constant Peclet number with
Reynolds number within the short heated section.

20
Pr=0.001 elliptic
: Pep=3 | parabolic
154 % =13

NUD

1.37
1.2 PeD=5
1.1
1.0

® 0.9

Fig. 12. Temperature distribution for laminar flow in a parallel
plate channel.

407

Q
3 4¥_/———""/
2 20¥/07//

Fig. 13. Local Nusselt number for different length of the
heating section in a parallel plate channel.

4. Conclusions

The present analytical study investigated the influ-
ence of axial heat conduction within the flow on heat
transfer in a circular pipe and in a parallel plate channel
with uniform heating at the wall. The two cases of semi-
infinite and finite length of the heated sections have been

-~
w
Pr=0.001
% =13
50 . . . . !
0 0.2 0.4 0.6 0.8 1
(b)

=

Fig. 11. Effect of axial heat conduction on the shape of the local Nusselt number for a circular pipe.
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Fig. 14. Influence of the Reynolds number on the shape of the
Nusselt number for a finite heated section in a parallel plate
channel.

analysed. From the results obtained in the present in-

vestigation, we draw the following conclusions:

o The effect of axial heat conduction in the flow is im-
portant for low Peclet numbers. For a semi-infinite
heated section the effect of axial heat conduction
within the flow might be neglected for Peclet numbers
larger than 20. For a finite length of the heated sec-
tion the effect of axial heat conduction additionally
depends on the length of the heated zone. Axial heat
conduction effects will be important also for Peclet
numbers larger than 100 if this zone is short.

e The obtained analytical results agree for pipe flow
very well with several numerical calculations and
with experimental results.

e By using a newly defined vector norm it is possible to
obtain a self-adjoint eigenvalue problem for the ex-
tended turbulent Graetz problem even though the
original convective diffusion operator is non-self-
adjoint. Therefore, an entirely analytical solution to
the extended turbulent Graetz problem with heat flux
boundary conditions has been developed. The result-
ing equations for semi-infinite as well as finite heating
length are as simple and efficient to compute as the
related solutions of the parabolic problem.

Appendix A

This section shows how the temperature distribution,
given by Eq. (27), can be further simplified by expressing
two sums by analytical functions. The first sum is given
by:

>\ @, (1)P;(n
LIOLIIO (A.1)

i=1

Expanding the vector / = [1,0]" into a series and using

Eq. (15), one obtains

~ 1
% / ™ &, (i) di. (A.2)
;Li q)i 0

The integral, appearing in Eq. (A.2) can be rewritten by
partial integration. By using also Eq. (16) this results
finally in:

=X

00

2k+1 Z

i=1

_.

(
P EA

x /0 &, () (i) dii, (A3)

- 1 Y
h(n) = m/ﬂ a* dn.
In order to obtain the expression for the investigated
sum according to Eq. (A.1), the second term in Eq. (A.3)
needs to be evaluated. Expanding the vector

= [0, h(7)Pay(71)]" in a series and using the expression
for the first vector component, one finally derives for the
expression under investigation:

k+1:i ()# () (A4)
=RHIF 3

Additionally we want to derive an analytical expression
for the second sum:

2 cb,-lA(zl)iDn gfz)‘ (A.5)

o

A

If we put X; — +o0 in Eq. (28), one obtains for the fully
developed temperature distribution in the fluid:

> (pi 1 (pi 71
0.() = (k+ D+ 3 2oL (®)

i=1 ;VIZ éi

=(k+1)x+ ¥(n), (A.6)

where ¥ (7) is not known. This function can be evalu-
ated by inserting Eq. (A.6) into the energy equation (4)
and solving the resulting ordinary differential equation
for ¥, one finally obtains

_ Tkl T o
ll/(n):/0 Fkaz(ﬁ)/o artdsdin 4+ C, = ¥Y(a) + C,.

(A7)

The constant C,, which appears in Eq. (A.7) can be
derived from a global energy balance. We might do that
by evaluating Eq. (7) for the case of fully developed flow
(x — +o0) and 7= 1. By considering the boundary
conditions according to Eq. (10), one obtains

z(;z,l) =5c=/01 (a@f%ial <ﬁ>%—?>r’kdﬁ. (A.8)
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Inserting Eq. (A.6) into Eq. (A.8) results in

/aﬁk'l’(fz)dﬁ:(k+l)/ a, (i) dit. (A.9)
0 0

2
Pey

Comparing this equation with Eq. (A.7), one derives the
following expression for the constant C:

2 1 1
Cz:%/o al(ﬁ)r~*(1ﬁ—(1c+l)/0 (i) dn,
o Tk

P (i) = | F ) /0 wr dsdn. (A.10)

From this, one finally derives for Eq. (A.5)

= @,y (1)Pyy (1)

= Y(i) = P(7) + Ca. (A.11)
=T

@,

It should be noted here, that the found analytical ex-
pressions for the two sums, according to the Eqgs. (A.1)
and (A.5), will transform into the expressions developed
by Papoutsakis et al. [5] if we consider the simplified
case of laminar pipe flow (k=1, g =a =1,
it = 2(1 — i%)). For this case, one obtains

i=1 },[H(p,
(A.12)
i<1>,~1(1)¢,-1<n),~2_ﬁ_“ 8 _7
W aro ot m
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